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HANDOUT 18 

Multiple Regression III – Various Topics 

1. Introduction 
2. Goodness of Fit 
3. The Standard Error of OLS Estimators 

 Source: Wooldridge (Ch 3), Hughes-Hallett (Math camp handouts) 

1. INTRODUCTION 

• Today we study 2 broad topics related to estimation in the context of multiple regression: 

o Goodness of fit (the famous R2) 

o Variance of OLS estimators 

2. GOODNESS OF FIT 

• Consider the following terms: 

Total Sum of Squares =  𝑇𝑆𝑆 = ∑(𝑌𝑖 − 𝑌̅)2 

Explained sum of squares= 𝐸𝑆𝑆 = ∑(𝑌̂𝑖 − 𝑌̅)
2

  

Residual sum of squares= 𝑅𝑆𝑆 = ∑𝑢̂𝑖
2

 

 

• It turns out that TSS=ESS+RSS. (See Wooldridge for proof) 

• The R-squared is defined to be 

𝑅2 =
𝐸𝑆𝑆

𝑇𝑆𝑆
 

𝑅2 =
∑(𝑌̂𝑖 − 𝑌̅)

2

∑(𝑌𝑖 − 𝑌̅)2
= 1 −

𝑅𝑆𝑆

𝑇𝑆𝑆
= 1 −

∑𝑢̂𝑖
2

∑(𝑌𝑖 − 𝑌̅)2
 

  

• By definition R2 is a number between zero and one (because TSS = ESS + RSS, ESS  0 and RSS  0). 

• Interpretation of R2: proportion of the sample variation in y that is explained by the OLS regression 
line.  

• R2 can also be shown to equal the squared correlation coefficient between the actual 𝑌𝑖 and the 

fitted values 𝑌̂𝑖. This is where the term “R-squared” comes from. 
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Example – Smoking and Lung Cancer 
. regress lcd cigs, robust 

Regression with robust standard errors                 Number of obs =       5 

                                                       F(  1,     3) =   22.59 

                                                       Prob > F      =  0.0177 

                                                       R-squared     =  0.8658 

                                                       Root MSE      =  63.921 

 

------------------------------------------------------------------------------ 

             |               Robust 

         lcd |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        cigs |   .3445158    .072487     4.75   0.018     .1138297    .5752019 

       _cons |     20.217   52.79902     0.38   0.727     -147.813     188.247 

------------------------------------------------------------------------------ 

QUESTION:  How do we interpret the R2 in this particular example? 

 

 

QUESTION: What happens to R2 when an explanatory variable is added to a 
regression? 

A. It must increase 
B. It increases or stays the same 
C. It must decrease 
D. It decreases or stays the same 
E. Not enough information provided 

• Adjusted R2: Penalizes you for using irrelevant explanatory variables 

• R2
 provides a measure of how well the OLS line fits the data 

o An R2=1 means all the points lie on the same line, i.e. OLS provides a perfect fit to the 
data 

o An R2 close to zero means a poor fit of the OLS line 

 

QUESTION: The larger the R2, the lower the likelihood that our regression suffers from 
omitted variable bias (OVB) 

A. True 
B. False 
C. I don’t know 
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3. THE STANDARD ERROR OF OLS ESTIMATORS 

Idea: The discussion of unbiasedness gives us an assessment of the central tendencies of 𝛽̂𝑗. Now we 

would like to have a measure of the spread in the sampling distribution of 𝛽̂𝑗. 

Key idea: All else equal, we would like an estimator of 𝛽̂𝑗  that has a low standard error. Why? 

 

 

 

 

We first add an assumption to our model called homoskedasticity. We do so for two reasons: 

(1) The formulas for the standard error of 𝛽̂𝑗  are simplified, which allows us to develop more easily 

the intuition behind the determinants of the standard error 

(2) OLS has important efficiency properties under the homoskedasticity assumption (see below) 

ASSUMPTION MLR.5 [HOMOSKEDASTICITY] 

𝑉𝑎𝑟[𝑢|𝑋1, 𝑋2, … , 𝑋𝑘] = 𝜎2  

If this assumption fails, then the model exhibits heteroskedasticity. See Appendix #3 for details. 

 

Assumptions MLR.1 through MLR.5 are collectively known as the Gauss-Markov assumptions (for cross-
sectional regression) 

 

Efficiency of OLS: The Gauss-Markov Theorem 

Under assumptions MLR.1 through MLR.5, 𝛽̂0, 𝛽̂1, … , 𝛽̂𝑘 are the Best Linear Unbiased 

Estimators (BLUEs) of 𝛽0, 𝛽1, … , 𝛽𝑘  respectively. 
 
Best: lowest variance 
Linear: Can be expressed as a linear function of the data on the dependent variable 

Unbiased: 𝐸(𝛽̂𝑗) = 𝛽𝑗  

Estimator: Rule/Method/Formula that can be applied to any sample to produce an 
estimate 
 
Key idea: The importance of the Gauss-Markov Theorem is that, when the standard set 
of assumptions holds, we need not look for alternative linear unbiased estimators: none 
will be better than OLS. 
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Terminology 

For the purposes of the next section, it will be helpful to think about various R2s, which we define here. 
Consider the following regression: 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝑢  

 

The following R2s can be defined: 

Name R2 computed from the following regression: 

𝑅2  𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝑢  

𝑅1
2  𝑋1 = 𝛼0 + 𝛼1𝑋2 + 𝛼2𝑋3 + 𝑣  

𝑅2
2  𝑋2 = 𝛿0 + 𝛿1𝑋1 + 𝛿2𝑋3 + 𝜀  

𝑅3
2  𝑋3 = 𝛾0 + 𝛾1𝑋1 + 𝛾2𝑋2 + 𝜂  

 

More generally, 𝑅𝑗
2 is the R-squared from regressing 𝑋𝑗 on all other explanatory variables (and including 

an intercept). 

 

QUESTION:  When would you expect 𝑅𝑗
2 to be large? 

 

 

THEOREM 3.2 [Sampling variances of the OLS slope estimators] 

Under assumptions MLR.1 through MLR.5, conditional on the sample values of the explanatory 
variables, 

𝑆𝑡𝑑. 𝐸𝑟𝑟𝑜𝑟(𝛽̂𝑗) = √
𝜎2

𝑇𝑆𝑆𝑗(1 − 𝑅𝑗
2)

               (𝟑. 𝟓𝟏) 

 

for j=1,2,…,k, where 𝑇𝑆𝑆𝑗 = ∑ (𝑋𝑖𝑗 − 𝑋𝑗̅)
2𝑛

𝑖=1   is the total sample variation in 𝑋𝑗, and 𝑅𝑗
2 is the R-

squared from regressing 𝑋𝑗 on all other explanatory variables (and including an intercept). 

Note: The proof of theorem 3.2 can be found in Wooldridge.
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FORMULA FOR STANDARD ERROR 

𝑆𝑡𝑑. 𝐸𝑟𝑟𝑜𝑟(𝛽̂𝑗) = √
𝜎2

𝑇𝑆𝑆𝑗(1 − 𝑅𝑗
2)

 

EXAMPLE 

 

 

 

Determinant of Standard Error Analysis 
Sign of Relationship 
with Standard Error 

(1) The variance of the error term (𝜎2)   

(2) The Total Sample Variation in 𝑿𝒋 (𝑇𝑆𝑆𝑗): 

𝑇𝑆𝑆𝑗 = ∑(𝑋𝑖𝑗 − 𝑋𝑗̅)
2

𝑛

𝑖=1

 
  

(3) The Linear Relationships Among the 

Explanatory Variables (𝑅𝑗
2)  
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THE COMPONENTS OF THE STANDARD ERROR OF OLS ESTIMATORS 

Eq. (3.51) shows that the standard error of 𝛽̂𝑗  depends on three factors: 𝜎2, 𝑇𝑆𝑆𝑗, and 𝑅𝑗
2. We now 

consider each of these factors separately. 
 

(1) The variance of the error term (𝜎2) 

Key: 𝜎2 is a feature of the population; it has nothing to do with sample size. 

 

(2) The Total Sample Variation in 𝑿𝒋 (𝑇𝑆𝑆𝑗): 

𝑇𝑆𝑆𝑗 = ∑(𝑋𝑖𝑗 − 𝑋𝑗̅)
2

𝑛

𝑖=1

 

Everything else equal, for estimating 𝛽𝑗, we prefer to have as much variation in 𝑋𝑗 as possible. When 

sampling randomly from the population, 𝑇𝑆𝑆𝑗 increases with sample size.  

 

(3) The Linear Relationships Among the Explanatory Variables (𝑅𝑗
2)  

It is important to see that this R-squared is distinct from the R-squared in the regression of Y on X1, 
X2,…Xk. 

Extreme cases: 

• 𝑅𝑗
2 = 0 [smallest Var (𝛽̂𝑗) for a given 𝜎2 and 𝑇𝑆𝑆𝑗] 

• 𝑅𝑗
2 = 1   [violates assumption MLR.3] 

Key case: When 𝑅𝑗
2 is “close” to 1, 𝑉𝑎𝑟(𝛽̂𝑗) might become too large. High (but not perfect) 

correlation between two or more of the independent variables is called multicollinearity. 

 

Key idea #1: Worrying about high degrees of correlation among the independent variables in the sample 

is really no different from worrying about a small sample size: both work to increase 𝑉𝑎𝑟(𝛽̂𝑗). 

 

Example: Estimating the effect of school expenditure categories on student performance. 

 

Key idea #2: A high degree of correlation between certain explanatory variables can be irrelevant as to 
how well we can estimate other parameters in the model. For example, consider: 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝑢  

Say 𝑋2 and 𝑋3 are highly correlated. Then 𝑉𝑎𝑟(𝛽̂2) and 𝑉𝑎𝑟(𝛽̂3) may be large. But the amount of 

correlation between 𝑋2 and 𝑋3 has no direct effect on 𝑉𝑎𝑟(𝛽̂1). 
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Suppose we estimate the following regression: 

𝒀 = 𝜷𝟎 + 𝜷𝟏𝑿𝟏 + 𝜷𝟐𝑿𝟐 + 𝜷𝟑𝑿𝟑 + 𝒖  

Adding an explanatory variable 𝑿𝟒 that is correlated with 𝑿𝟏 will: 

A. Increase the standard error of 𝜷̂𝟏 

B. Have no effect on the standard error of 𝜷̂𝟏 

C. Decrease the standard error of 𝜷̂𝟏 
D. Not enough information given 
E. I don’t know 

 

 

Standard Errors in Misspecified Models 

Key idea:  The choice of whether or not to include a particular variable in a model can sometimes be 
made by analyzing the tradeoff between bias and variance. 

 

Estimating the Standard Errors of the OLS Estimators 

Problem: The formula for 𝑆𝑡𝑑 𝐸𝑟𝑟𝑜𝑟(𝛽̂𝑗) (and hence the formula for the standard error) depends on 

𝜎2, which we don’t observe since it’s a population parameter.  

Solution: Obtain an unbiased estimator of 𝜎2, which will then allow us to obtained unbiased estimators 

of 𝑆𝑡𝑑 𝐸𝑟𝑟𝑜𝑟(𝛽̂𝑗). See Appendix #4 for details. 

 
 

Key Ideas 
 

• Goodness of fit (R2): What it is and what it is not. 
 

• Standard Errors:  

o We care about magnitude of coefficient but also about standard error 

o Important to understand determinants of standard errors to be able to better design 
and consume empirical studies 

o Tradeoff between bias and variance 
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APPENDIX #1– OLS IN MATRIX NOTATION  

(Adapted from Johnston and Hughes Hallett) 

• In this course, we have expressed the linear PRF for a regression with k explanatory variables in the 
following form: 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + ⋯+ 𝛽𝑘𝑋𝑘𝑖 + 𝑢𝑖    (4) 
 

• We can write (4) using matrix algebra. This may be useful to you for two reasons: 

o Both in API-210 and in many academic papers you will see the PRFs written in matrix 
algebra form, so it is important for you to be familiar with this notation 

o Matrix algebra allows us to specify how to compute the OLS estimators when we have 
more than one explanatory variable in our PRF 

• There are several matrix algebra notations used. We will focus on two that are commonly used: 

o Notation #1: Will be used in API-210 and has some computational advantages. This 
notation will be covered by Deb Hughes Hallett in Math Camp.  

o Notation #2: Used in classic textbooks such as Johnston and Greene.  

 

Notation #1  

• You can write the PRF: 𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯+ 𝛽𝑘𝑥𝑘𝑖 + 𝜀𝑖 in the following way: 
𝑦𝑖 = 𝑥𝑖𝛽 + 𝜀𝑖, where: 

𝛽 =

[
 
 
 
 
 
𝛽0

𝛽1

𝛽2

⋮
⋮

𝛽𝑘]
 
 
 
 
 

 and  𝑥𝑖 =

[
 
 
 
 
 
1
𝑥1𝑖

𝑥2𝑖

⋮
⋮

𝑥𝑘𝑖]
 
 
 
 
 

 

i denotes the observation, and ‘ denotes the transpose of the matrix. 

• The OLS estimators from the linear PRF 𝑦𝑖 = 𝑥𝑖
′𝛽 + 𝜀𝑖  can be computed as follows: 

𝛽̂ = (∑𝑋𝑖𝑋𝑖
′

𝑁

𝑖=1

)

−1

∑𝑋𝑖𝑌𝑖

𝑁

𝑖=1
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Notation #2 

The hypothesized model is: 

 𝑦 = 𝑋𝛽 + 𝑢 

Where 

𝑦 =

[
 
 
 
 
𝑌1

𝑌2

⋮
⋮
𝑌𝑛]

 
 
 
 

 𝑋 =

[
 
 
 
 
1 𝑥11 𝑥12 ⋯ 𝑥1𝑘

1 𝑥21 𝑥22 ⋯ 𝑥2𝑘

⋮ ⋮ ⋮ ⋱ ⋮
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑘]

 
 
 
 

 𝛽 =

[
 
 
 
 
 
𝛽0

𝛽1

𝛽2

⋮
⋮

𝛽𝑘]
 
 
 
 
 

 and 𝑢 =

[
 
 
 
 
𝑢1

𝑢2

⋮
⋮

𝑢𝑛]
 
 
 
 

 

The OLS estimator of the population parameters represented in the vector 𝛽 is given by: 

 𝛽̂𝑂𝐿𝑆 = (𝑋′𝑋)−1𝑋′𝑦 

and under certain conditions the variance of this estimator is given by: 

 𝑉𝑎𝑟(𝛽̂𝑂𝐿𝑆) = 𝜎2(𝑋′𝑋)−1 
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APPENDIX #2 - STUDIES ABOUT CLASS SIZE AND TEST SCORES 

Study #1 - Randomized Experiment in Tennessee (STAR) 
. reg tscorek sck, robust; 

Regression with robust standard errors                 Number of obs =    5786 

                                                       F(  1,  5784) =   40.67 

                                                       Prob > F      =  0.0000 

                                                       R-squared     =  0.0073 

                                                       Root MSE      =  73.483 

 

------------------------------------------------------------------------------ 

             |               Robust 

     tscorek |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         sck |   13.74055   2.154628     6.38   0.000     9.516677    17.96443 

       _cons |   918.2013   1.135073   808.94   0.000     915.9762    920.4265 

------------------------------------------------------------------------------ 

 

 sck: dummy for small class size 

 

Study #2 - Observational Study in California 

 
. reg testscr str, robust; 

 

Regression with robust standard errors                 Number of obs =     420 

                                                       F(  1,   418) =   19.26 

                                                       Prob > F      =  0.0000 

                                                       R-squared     =  0.0512 

                                                       Root MSE      =  18.581 

 

------------------------------------------------------------------------------ 

             |               Robust 

     testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         str |  -2.279808   .5194892    -4.39   0.000    -3.300945   -1.258671 

       _cons |    698.933   10.36436    67.44   0.000     678.5602    719.3057 

------------------------------------------------------------------------------ 

 
 str: student-teacher ratio 
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APPENDIX #3 – HETEROSKEDASTICITY 

• Note that the standard error formula in (3.58) is not a valid estimator of sd(𝛽̂𝑗) if the errors exhibit 

heteroskedasticity. Thus, while the presence of heteroskedasticity does not lead to bias in 𝛽̂𝑗, it 

does lead to bias in the usual formula for the variance of 𝛽̂𝑗, which then invalidates the standard 

errors. 

• There are statistical tests to assess the presence of heteroskedasticity (see chapter 8 of Wooldridge 
for details). 

• However, for the purposes of this course, we will adopt Stock and Watson’s guideline of always 
calculating standard errors assuming the presence of heteroskedasticity. These are called 
heteroskedasticity-robust standard errors. 

• The heteroskedasticity-robust standard error formula is: 

𝑠𝑒(𝛽̂𝑗) =
√

∑ 𝑟̂𝑖𝑗
2𝑢̂𝑖

2
𝑛

𝑖=1

𝑅𝑆𝑆𝑗
2  

Where 𝑟̂𝑖𝑗
2  denotes the square of the residual from regressing 𝑋𝑗 on all other explanatory variables, 

and 𝑅𝑆𝑆𝑗
2 is the sum of squared residuals from this regression. 

• In Stata you get this standard error by using the “robust” option when you run a regression. For 
example, “regress lcd cigs, robust” 

 

APPENDIX #4 - ESTIMATING THE STANDARD ERRORS OF THE OLS ESTIMATORS 

Problem: The formula for 𝑆𝑡𝑑 𝐸𝑟𝑟𝑜𝑟(𝛽̂𝑗) (and hence the formula for the standard error) depends on 

𝜎2, which we don’t observe since it’s a population parameter.  

Solution: Obtain an unbiased estimator of 𝜎2, which will then allow us to obtained unbiased estimators 

of 𝑆𝑡𝑑 𝐸𝑟𝑟𝑜𝑟(𝛽̂𝑗). 

The unbiased estimator of 𝜎2 in the general multiple regression case is: 

𝜎̂2 =
∑ 𝑢̂2𝑛

𝑖=1

(𝑛 − 𝑘 − 1)
 

where  n = number of observations and k = number of explanatory variables 

The term n-k-1 is the degrees of freedom (df) for the general OLS model with n observations and k 
explanatory variables. 

Standard error of 𝜷̂𝒋:   𝑆𝑡𝑑 𝐸𝑟𝑟𝑜𝑟(𝛽̂𝑗) =
𝜎̂

√𝑇𝑆𝑆𝑗(1−𝑅𝑗
2)

                          (3.58) 

   


