HANDOUT 18

Multiple Regression III – Various Topics

- 1. Introduction
- 2. Goodness of Fit
- 3. The Standard Error of OLS Estimators

Source: Wooldridge (Ch 3), Hughes-Hallett (Math camp handouts)

1. INTRODUCTION

- Today we study 2 broad topics related to estimation in the context of multiple regression:
 - Goodness of fit (the famous R²)
 - Variance of OLS estimators

2. GOODNESS OF FIT

Consider the following terms:

Total Sum of Squares = $TSS = \sum (Y_i - \overline{Y})^2$

Explained sum of squares= $ESS = \sum (\hat{Y}_i - \overline{Y})^2$

Residual sum of squares= $RSS = \sum \hat{u_i}^2$

- It turns out that TSS=ESS+RSS. (See Wooldridge for proof)
- The R-squared is defined to be

$$R^2 = \frac{ESS}{TSS}$$

$$R^{2} = \frac{\sum (\hat{Y}_{i} - \bar{Y})^{2}}{\sum (Y_{i} - \bar{Y})^{2}} = 1 - \frac{RSS}{TSS} = 1 - \frac{\sum \hat{u}_{i}^{2}}{\sum (Y_{i} - \bar{Y})^{2}}$$

- By definition R^2 is a number between zero and one (because TSS = ESS + RSS, ESS \geq 0 and RSS \geq 0).
- <u>Interpretation of R²</u>: proportion of the sample variation in y that is explained by the OLS regression line.
- R^2 can also be shown to equal the **squared correlation** coefficient between the actual Y_i and the fitted values \hat{Y}_i . This is where the term "R-squared" comes from.

Example – Smoking and Lung Cancer

. regress lcd cigs, robust

Prob > F = 0.0177 R-squared = 0.8658 Root MSE = 63.921

 lcd	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
cigs _cons		.072487 52.79902		0.018 0.727	.1138297 -147.813	.5752019 188.247

QUESTION: How do we interpret the R² in this particular example?

QUESTION: What happens to R² when an explanatory variable is added to a regression?

- A. It must increase
- B. It increases or stays the same
- C. It must decrease
- D. It decreases or stays the same
- E. Not enough information provided
- Adjusted R²: Penalizes you for using irrelevant explanatory variables
- R² provides a measure of how well the OLS line fits the data
 - An R²=1 means all the points lie on the same line, i.e. OLS provides a perfect fit to the data
 - o An R² close to zero means a poor fit of the OLS line

QUESTION: The larger the R², the lower the likelihood that our regression suffers from omitted variable bias (OVB)

- A. True
- B. False
- C. I don't know

3. THE STANDARD ERROR OF OLS ESTIMATORS

<u>Idea</u>: The discussion of unbiasedness gives us an assessment of the central tendencies of $\hat{\beta}_j$. Now we would like to have a measure of the spread in the sampling distribution of $\hat{\beta}_i$.

<u>Key idea</u>: All else equal, we would like an estimator of $\hat{\beta}_i$ that has a low standard error. Why?

We first add an assumption to our model called homoskedasticity. We do so for two reasons:

- (1) The formulas for the standard error of $\hat{\beta}_j$ are simplified, which allows us to develop more easily the intuition behind the determinants of the standard error
- (2) OLS has important efficiency properties under the homoskedasticity assumption (see below)

ASSUMPTION MLR.5 [HOMOSKEDASTICITY]

$$Var[u|X_1,X_2,\dots,X_k]=\sigma^2$$

If this assumption fails, then the model exhibits heteroskedasticity. See Appendix #3 for details.

Assumptions MLR.1 through MLR.5 are collectively known as the Gauss-Markov assumptions (for cross-sectional regression)

Efficiency of OLS: The Gauss-Markov Theorem

Under assumptions MLR.1 through MLR.5, $\hat{\beta}_0$, $\hat{\beta}_1$, ..., $\hat{\beta}_k$ are the Best Linear Unbiased Estimators (BLUEs) of β_0 , β_1 , ..., β_k respectively.

Best: lowest variance

Linear: Can be expressed as a linear function of the data on the dependent variable

<u>U</u>nbiased: $E(\hat{\beta}_i) = \beta_i$

Estimator: Rule/Method/Formula that can be applied to any sample to produce an

estimate

<u>Key idea</u>: The importance of the Gauss-Markov Theorem is that, when the standard set of assumptions holds, we need not look for alternative linear unbiased estimators: none will be better than OLS.

Terminology

For the purposes of the next section, it will be helpful to think about various R²s, which we define here. Consider the following regression:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + u$$

The following R²s can be defined:

Name	R ² computed from the following regression:
R^2	$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + u$
R_1^2	$X_1 = \alpha_0 + \alpha_1 X_2 + \alpha_2 X_3 + v$
R_2^2	$X_2 = \delta_0 + \delta_1 X_1 + \delta_2 X_3 + \varepsilon$
R_3^2	$X_3 = \gamma_0 + \gamma_1 X_1 + \gamma_2 X_2 + \eta$

More generally, R_j^2 is the R-squared from regressing X_j on all other explanatory variables (and including an intercept).

QUESTION: When would you expect R_j^2 to be large?

THEOREM 3.2 [Sampling variances of the OLS slope estimators]

<u>Under assumptions MLR.1 through MLR.5</u>, conditional on the sample values of the explanatory variables,

$$Std.Error(\hat{\beta}_j) = \sqrt{\frac{\sigma^2}{TSS_j(1 - R_j^2)}}$$
 (3.51)

for j=1,2,...,k, where $TSS_j = \sum_{i=1}^n (X_{ij} - \overline{X}_j)^2$ is the total sample variation in X_j , and R_j^2 is the R-squared from regressing X_j on all other explanatory variables (and including an intercept).

Note: The proof of theorem 3.2 can be found in Wooldridge.

EODA ALLI A	EOD CTANI	DARD FROM
FORMULA	FOR STANI	DARD ERROR

$$Std.Error(\hat{\beta}_j) = \sqrt{\frac{\sigma^2}{TSS_j(1-R_j^2)}}$$

Determinant of Standard Error	Analysis	Sign of Relationship with Standard Error
(1) The variance of the error term (σ^2)		
(2) The Total Sample Variation in X_j (TSS_j): $TSS_j = \sum_{i=1}^n (X_{ij} - \bar{X}_j)^2$		
(3) The Linear Relationships Among the Explanatory Variables (R_j^2)		

THE COMPONENTS OF THE STANDARD ERROR OF OLS ESTIMATORS

Eq. (3.51) shows that the standard error of $\hat{\beta}_i$ depends on three factors: σ^2 , TSS_i , and R_i^2 . We now consider each of these factors separately.

(1) The variance of the error term (σ^2)

<u>Key</u>: σ^2 is a feature of the population; it has nothing to do with sample size.

(2) The Total Sample Variation in X_i (TSS_i):

$$TSS_j = \sum_{i=1}^n (X_{ij} - \overline{X}_j)^2$$

Everything else equal, for estimating eta_j , we prefer to have as much variation in X_j as possible. When sampling randomly from the population, TSS_i increases with sample size.

(3) The Linear Relationships Among the Explanatory Variables (R_i^2)

It is important to see that this R-squared is distinct from the R-squared in the regression of Y on X₁, $X_2,...X_k$.

Extreme cases:

- $R_j^2=0$ [smallest Var $(\hat{\beta}_j)$ for a given σ^2 and TSS_j] $R_j^2=1$ [violates assumption MLR.3]

Key case: When R_i^2 is "close" to 1, $Var(\hat{\beta}_i)$ might become too large. High (but not perfect) correlation between two or more of the independent variables is called *multicollinearity*.

Key idea #1: Worrying about high degrees of correlation among the independent variables in the sample is really no different from worrying about a small sample size: both work to increase $Var(\hat{\beta}_i)$.

Example: Estimating the effect of school expenditure categories on student performance.

Key idea #2: A high degree of correlation between certain explanatory variables can be irrelevant as to how well we can estimate other parameters in the model. For example, consider:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + u$$

Say X_2 and X_3 are highly correlated. Then $Var(\hat{\beta}_2)$ and $Var(\hat{\beta}_3)$ may be large. But the amount of correlation between X_2 and X_3 has no direct effect on $Var(\hat{\beta}_1)$.

Suppose we estimate the following regression:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + u$$

Adding an explanatory variable X_4 that is correlated with X_1 will:

- A. Increase the standard error of $\widehat{\beta}_1$
- B. Have no effect on the standard error of $\widehat{m{\beta}}_1$
- C. Decrease the standard error of $\widehat{\beta}_1$
- D. Not enough information given
- E. I don't know

Standard Errors in Misspecified Models

<u>Key idea:</u> The choice of whether or not to include a particular variable in a model can sometimes be made by analyzing the tradeoff between bias and variance.

Estimating the Standard Errors of the OLS Estimators

<u>Problem</u>: The formula for $Std\ Error(\hat{\beta}_j)$ (and hence the formula for the standard error) depends on σ^2 , which we don't observe since it's a population parameter.

Solution: Obtain an unbiased estimator of σ^2 , which will then allow us to obtained unbiased estimators of $Std\ Error(\hat{\beta}_i)$. See Appendix #4 for details.

Key Ideas

- Goodness of fit (R2): What it is and what it is not.
- Standard Errors:
 - We care about magnitude of coefficient but also about standard error
 - Important to understand determinants of standard errors to be able to better design and consume empirical studies
 - o Tradeoff between bias and variance

APPENDIX #1- OLS IN MATRIX NOTATION

(Adapted from Johnston and Hughes Hallett)

• In this course, we have expressed the linear PRF for a regression with k explanatory variables in the following form:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + u_i \tag{4}$$

- We can write (4) using matrix algebra. This may be useful to you for two reasons:
 - Both in API-210 and in many academic papers you will see the PRFs written in matrix algebra form, so it is important for you to be familiar with this notation
 - Matrix algebra allows us to specify how to compute the OLS estimators when we have more than one explanatory variable in our PRF
- There are several matrix algebra notations used. We will focus on two that are commonly used:
 - Notation #1: Will be used in API-210 and has some computational advantages. This
 notation will be covered by Deb Hughes Hallett in Math Camp.
 - Notation #2: Used in classic textbooks such as Johnston and Greene.

Notation #1

• You can write the PRF: $y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_k x_{ki} + \varepsilon_i$ in the following way: $y_i = x_i \beta + \varepsilon_i$, where:

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{bmatrix} \quad \text{and} \quad x_i = \begin{bmatrix} 1 \\ x_{1i} \\ x_{2i} \\ \vdots \\ \vdots \\ x_{ki} \end{bmatrix}$$

i denotes the observation, and 'denotes the transpose of the matrix.

• The OLS estimators from the linear PRF $y_i = x_i'\beta + \varepsilon_i$ can be computed as follows:

$$\hat{\beta} = \left(\sum_{i=1}^{N} X_i X_i'\right)^{-1} \sum_{i=1}^{N} X_i Y_i$$

Notation #2

The hypothesized model is:

$$y = X\beta + u$$

Where

$$y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ \vdots \\ Y_n \end{bmatrix} \qquad X = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nk} \end{bmatrix} \qquad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \vdots \\ \beta_k \end{bmatrix} \qquad \text{and} \qquad u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$

The OLS estimator of the population parameters represented in the vector β is given by:

$$\hat{\beta}_{OLS} = (X'X)^{-1}X'y$$

and under certain conditions the variance of this estimator is given by:

$$Var(\hat{\beta}_{OLS}) = \sigma^2 (X'X)^{-1}$$

APPENDIX #2 - STUDIES ABOUT CLASS SIZE AND TEST SCORES

Study #1 - Randomized Experiment in Tennessee (STAR)

. reg tscorek sck, robust; Regression with robust standard errors

Number	of obs	=	5786
F(1,	5784)	=	40.67
Prob >	F	=	0.0000
R-squai	red	=	0.0073
Root MS	SE	=	73.483

tscorek	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
	13.74055 918.2013			0.000	9.516677 915.9762	17.96443 920.4265

sck: dummy for small class size

Study #2 - Observational Study in California

. reg testscr str, robust;

Regression with robust standard errors

Number of obs	=	420
F(1, 418)	=	19.26
Prob > F	=	0.0000
R-squared	=	0.0512
Root MSE	=	18.581

testscr	Coef.	Robust Std. Err.				Interval]
str	-2.279808 698.933	.5194892	-4.39	0.000	-3.300945 678.5602	

str: student-teacher ratio

APPENDIX #3 – HETEROSKEDASTICITY

- Note that the standard error formula in (3.58) is not a valid estimator of $sd(\hat{\beta}_j)$ if the errors exhibit heteroskedasticity. Thus, while the presence of heteroskedasticity does not lead to bias in $\hat{\beta}_j$, it does lead to bias in the usual formula for the variance of $\hat{\beta}_j$, which then invalidates the standard errors.
- There are statistical tests to assess the presence of heteroskedasticity (see chapter 8 of Wooldridge for details).
- However, for the purposes of this course, we will adopt Stock and Watson's guideline of always
 calculating standard errors assuming the presence of heteroskedasticity. These are called
 heteroskedasticity-robust standard errors.
- The heteroskedasticity-robust standard error formula is:

$$se(\hat{\beta}_j) = \sqrt{\frac{\sum_{i=1}^n \hat{r}_{ij}^2 \hat{u}_i^2}{RSS_j^2}}$$

Where \hat{r}_{ij}^2 denotes the square of the residual from regressing X_j on all other explanatory variables, and RSS_i^2 is the sum of squared residuals from this regression.

 In Stata you get this standard error by using the "robust" option when you run a regression. For example, "regress lcd cigs, robust"

APPENDIX #4 - ESTIMATING THE STANDARD ERRORS OF THE OLS ESTIMATORS

<u>Problem</u>: The formula for $Std\ Error(\hat{\beta}_j)$ (and hence the formula for the standard error) depends on σ^2 , which we don't observe since it's a population parameter.

Solution: Obtain an unbiased estimator of σ^2 , which will then allow us to obtained unbiased estimators of $Std\ Error(\hat{\beta}_j)$.

The unbiased estimator of σ^2 in the general multiple regression case is:

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n \hat{u}^2}{(n-k-1)}$$

where n = number of observations and k = number of explanatory variables

The term n-k-1 is the *degrees of freedom (df)* for the general OLS model with n observations and k explanatory variables.

Standard error of
$$\widehat{\boldsymbol{\beta}}_{j}$$
: $Std\ Error(\widehat{\beta}_{j}) = \frac{\widehat{\sigma}}{\sqrt{TSS_{j}(1-R_{j}^{2})}}$ (3.58)